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For turbulent swirl ing f low in a duct of circular cross-section, the time-averaged 
Navier-Stokes and continuity equations are written, and by introducing into these 
equations the longitudinal vort icity e) and stream-function ~, they are cast in a form 
amenable to digital computer using well known finite difference techniques. A 
model of effective viscosity is introduced and the suitabil ity of its various forms is 
discussed. The Van-Driest modification to the Prandtl mixing length concept is 
applied near the solid boundary whi le the model used far from the boundary is a 
simple form of the mixing length model. This simple model is found to provide 
realistic predictions when comparisons are made with available experimental mean 
axial velocity data for f low through a 16.5" conical diffuser (area ratio 4.4) fitted 
with a tailpipe. 

Keywords: turbulent swirling flow, digital computer, effective viscosity, mean 
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The performance of a diffuser containing stall can be 
appreciably improved by reasonable levels of inlet swirl, 
but when the strength of the inlet swirl exceeds a certain 
threshold the flow in the diffuser is accompanied by a 
central recirculation zone. Both the circumferential 
velocity component and the central recirculating flow 
have the effects of convecting the main flow momentum 
and energy towards the wall, thereby counteracting the 
tendency of the flow to separate from the wall. Such a 
swirling flow may either be generated using a swirl 
generator, or it may be inherent in the nature of the 
installation. 

The subject of swirling flow in wide angle diffusers 
appears to have received limited attention in the past. 
Various experimentalists (eg Refs 1-9) have adopted the 
empirical approach of constructing and testing the 
performance of numerous wide angle diffusers. Such an 
approach can be time consuming and may well be 
uneconomic. An alternative approach is to establish a 
reliable theoretical model to enable a rational design 
procedure to be carried out. In 1975, A1-Obaidi 1° carried 
out an experimental and theoretical study of the flow 
distribution in a 30 ° angle diffuser. The boundary layer 
method of calculation developed by Patankar and 
Spalding13 was applied to his diffuser geometry. The main 
objective was to investigate whether a mixing-length 
model of turbulence would yield satisfactory results in the 
non-separated regions of the flow. The theoretical 
analysis yielded results in fair agreement with the 
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experimental data in these regions. However, since a 
boundary layer analysis is not applicable in the region of 
flow separation due to the inherent nature of the 
boundary layer assumptions, a complete solution of the 
flow in a wide angle diffuser requires the use of the full 
Navier-Stokes equations. 

Accordingly, in the present investigation, the full 
Navier-Stokes and continuity equations have been solved 
numerically for the time-mean flow by adapting the finite 
difference method of calculation developed by Gosman et 
a111. One of the main objectives was to investigate 
whether a mixing-length turbulence model would yield 
satisfactory agreement between calculated and 
experimental distributions of flow through diffusers 
including the region of flow separation. In addition, an 
experimental investigation into the flow in a wide angle 
diffuser was carried out. This is reported in the 
authors' previous work 15. The diffuser was fitted with a 
tailpipe in order that the downstream boundary 
conditions used in the calculations should be a good 
approximation to those occurring in the experiment. 

The method of calculat ion 
The majority of fluid flow problems of practical interest 
are turbulent. In the flow of fluid through wide angle 
diffusers the influence of the laminar viscous layer is 
confined to the solid boundary. Turbulent flows are not 
amenable to exact analysis using existing mathematical 
methods, and the current engineering approach to the 
solution of turbulent flow problems is to solve a steady, 
time-averaged set of equations using suitable empirical 
assumptions to model certain terms in order to obtain a 
closed problem. The accuracy of the solution depends 
both on the validity of the empirical input and on the 
sophistication of the model, although the most 
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sophisticated models do not necessarily yield the best 
results. 

Starting from the full Navier-Stokes equations and 
continuity equation in cylindrical-polar co-ordinates, 
suitable forms of the equations are established which 
make it possible to calculate parabolic and elliptic-type 
swirling turbulent flows. 

In this investigation a quasi-cylindrical polar co- 
ordinate system based on a slightly non-orthogonal mesh 
has been used, so that the outer mesh points lie on the flow 
boundaries. To check the applicability of the chosen 
scheme we have calculated the flow distribution in a 
diffuser using both the scheme and an orthogonal polar 
co-ordinate scheme. A comparison of the two schemes' 
results has been made and we have observed that the non- 
orthogonal scheme seems more attractive because of its 
simplicity and flexibility, but it does not appear to have 
been much used. 

The scheme is very convenient for obtaining 
solutions for flows in ducts of arbitrary shape, provided 
that the curvature of such duct boundaries is small when, 
as shown in the present author's previous results ~5, the 
errors incurred are negligible. The approximations made 
would amount to an assumption of a quasi-l-D flow, 
apart from the influence of the viscous terms in the 
equations. The diffusers considered here are of small 
enough angles that the errors involved in the 
approximations are negligible for engineering purposes. 

The classical procedure for describing turbulent 
flows mathematically entails separating the instantaneous 
flow parameters into their mean and fluctuating 

components, and for example in terms of the present 
notation, the instantaneous axial velocity component 
U==Uz+U'z, where Uz and U'~ are the mean and 
fluctuating constituents of U, respectively. For  3-D 
cylindrical co-ordinates the Navier-Stokes equations are 
given in Goldstein 9 in terms of time-averaged and 
fluctuating components. 

For the present situation treated as 2-D in the 
plane z ~ r, the directions z and r equations become: 

CU= OU= lOP 1 C(  CU, t 
v' -z pOz -pc'  

3 

i o f au= , ,) 
+p~r~#r~-r -pru,u,~ (1) 

ufU,+uOU, U~o_ 1OF Of OU, w=,) 
~-r ~z r p Or + Cz~l~z-z -pU=u'; 

l Of Ou, _,:) ( u ,  ~i;:) 
+pr~r lir~-r -P TM, ; - 1 1 ~ - - ~ - ;  

(2) 
and the continuity equation becomes: 

~u, u, +oUz_o 
Or r ~z - z -  (3) 

In modelling turbulent flows the concept of an effective 
viscosity ~e~ is adopted here, where 

#e~ = IL +/~ (3a) 

# and ~, being the laminar and turbulent viscosities 

Notation 

a 0 A coefficient in the general elliptic 
equation 

auR The under-relaxation parameter 
AE, Aw, AN, As Coefficients in the convection 

terms of the difference equation 
A) A coefficient in the general 

substitution formula 
b 0 A coefficient in the general 

substitution formula 
BE, Bw, BN, Bs Coefficients in the diffusion terms 

of the difference equation 
c o A coefficient in the general elliptic 

equation 
h Height of grid line 
I Integer index denoting the 

streamwise direction 
J Integer index denoting the cross- 

stream direction 
K Mixing constant 
n~ Mass flow rate 
I Mixing length 
P Pressure 
SN Swirl number 

Shear stress 
Uz, U,, Up Components of velocity vector in 

three orthogonal directions z, r 
and 0 respectively 
Implies average velocity 

U Total velocity vector 
U' Instantaneous velocity 

P 
g 

~tL t 

0 
¢D 

~AB 

2, r, 0 

Y 

Subscripts 
n, s, e, w 

c 
N. S. E. W 

NE, NS, NW, SW 

(O 

Superscripts 

Swirl blade angle 
Small angle less than one radian 
Density of the fluid 
Laminar viscosity of the fluid 
Effective viscosity of the fluid 
(=/~+IO 
Turbulent viscosity of the fluid 
The dependent variable of the 
general elliptic equation 
The stream function 
Vorticity 
A group of terms in the 
substitution formula 
Cylindrical coordinates 
Distance from solid boundary 

Pertaining to the co-ordinates of 
the sides of the 'tank' 
Indicates centre-line 
Refers to neighbouring nodes 
which lie respectively north, 
south, east and west of node P 
Refers to nodes which lie near to 
nodes N, S, E and W 
Refers to the vorticity ~o or oVr 

Indicates average value 
Indicates instantaneous value 
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respectively. Analogous to the direct relationship between 
the viscous shear and mean velocity gradient, the 
turbulent shear stresses are obtained by replacing the 
laminar viscosity ~ by pe where e is the eddy viscosity 
thus: 

[OUo Uo) 
pu',u'o = P~t Or (4) 

(OUo  .u'.u; ) 

/ou,  ou:'~ 
pu'u:=pet~-z +-~-r ) (6) 

The time-averaged Navier-Stokes 
continuity equations then become: 

u f U ,  + u f U ,  U~ 
r 

equations and 

_ lOP _~ lO~rOU,  ~ OZU, U,) 
p0r p \ r O t \  ~ - r )  + 0z ~ 7 (7) 

OU= OU= lOP lX~rrl" l O i OU:'~ OZU=~ 
U,~-r + U= 

(8) 

OU, b U,+OU=_o 
Or -7- -~ -z -  (9) 

where p~ = pc. 

The stream function ~ satisfying Eq (9) is related to 
the velocity components by 

1 O@ 
- U= (10) 

pr Or 

pr Oz 
- - - = U ,  (II) 

The vorticity of the axial flow is given by 

OU, OU, 
co= 0~- Or (12) 

from Eq (10) 

0 1 barb 
~r-r (rUz) = p Or 2 

OU= 1 02ff U~ 

• " Or rp Or 2 r 

Similarly from Eq (11) 

OU, 1 02~k 
Oz pr Oz 2 (14) 

Substituting Eqs (13) and (14) in (12) yields 

1 02~1 U z 1 02~/ 
co = pr Or 2 r pr OZ 2 (I 5) 

It is convenient to eliminate the pressure gradients from 
Eqs (7) and (8) above by differentiating Eq (7) with respect 
to r aria Eq (8) with respect to z and subtract the result• 

(13) 

Upon simplification and substitution of Eqs (10) (11) and 
(12) this yields: 

r &~#4~r~]]-r~zUo)=r3S<o (16) 

and Eq (15) also can be represented as 

prOz) Or\prOr) 0 (17) 

In the present notation the equation for the swirling 
component may be written as 

o¢\ of  OCk o f  3 ofuoVx 

for axi-symmetric (OP/O0 = 0) flows, where the source term 
So~ in Eq (16) is taken to zero (see Ref 11). 
Inspection of Eqs (16), (17) and (18) reveals that they may 
be written in the general form 

O O 
-fr~b,r~(z%C~)} + r d , = 0  (19) 

The newly introduced symbols in the basic Eq (19) 
are identified in Table 1. 

The solution procedure developed in Gosman et 
al ~ is for 2-D axi-symmetric, general orthogonal 
curvilinear co-ordinates, however, upon simplification to 
cylindrical polar co-ordinates their general equation 
becomes the same as Eq (19). As a result the finite 
difference methods, equations and computer techniques 
applied in the present author's previous results a s may be 
used. 

Solving the  basic equat ion  

A point iterative finite difference technique is used to 
solve the general Eq (19). If a straightforward cylindrical 
polar co-ordinate system is adopted, the 'tank' illustrated 
below is used at the grid point P. (See Fig A2.) 

If the above node notation is used and the 
difference techniques described in detail in the present 
author's previous results 15 are adopted, the value of a 
variable ~b at an interior node p may be expressed in terms 

Table 1 

a~ b~ c~ d~ 

0 
o)/, ? ? ~,,, s~- ~z (P u°2) 

¢ 0 1/pr 2 1 - con 
rUo 1 I%.? 1 Ir 2 0 
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of the same variables at surrounding nodes thus" 

(~p =)"  = N,E,W,S 

Z [Dj] 
j=N,E,W,S 

(20) 

where ~ denotes summation over the surrounding 
j = N,E,W,S 

nodes N, E, W and S: Dj represents the sum of the 
convection and dissipation terms and its evaluation is 
described in the appendix. Solving Eq (20) above 
involves assuming initial values for 4) at eachj location in 
the grid. The values of the source terms d~ shown in Table 
1 and the relevant boundary conditions are then supplied 
for each variable 4): furthermore, to effect closure an 
effective viscosity model must be chosen. The boundary 
conditions applied in this work are as depicted in Fig 1. 

T h e  f o r m  in w h i c h  t h e  f i n i t e  d i f f e r e n c e  
a p p r o x i m a t i o n s  h a v e  b e e n  used 

The above section has shown the way in which the Navier- 
Stokes equations in cylindrical-polar co-ordinates have 
been converted into finite difference approximations on 
the basis of an orthogonal uniform rectangular mesh 
system. 

In the present analysis they have not been used as 
such. This is because we have chosen a mesh system in 
which the outermost mesh points lie exactly on the solid 

b) 
"7" = f ( ~ w  ,r) 

~= ~w 
U r = U z = O  3 ° ! 

Prescribed ! 
I I a2~  b o,; I 

u2,Ur,r, ~ ~ ~ az 2 = 0 
I I 
I I 
" ~ i I 

a¢ 
- - = 0  ar 

~ Z  

8¼ ° 

Prescribed I 
I 

Ur,Uz, '~,~ 
! 
I 

I 

Fig 1 

09 
r = f( ~bw ,r) 

= Sw 
U z =U r = 0  

Boundary conditions 

a~= 0 
ar 

I 
I 
I 
I 

p ° ~ =  0 
i az 
I 
I 

I 

E 
v/ / /  / / / ~  

s 

Fig 2 Typical mesh employed 

boundary, and the way in which interior nodes were 
calculated resulted in stream-wise mesh lines slightly off- 
set from the horizontal, but the mesh lines in the second 
co-ordinate (r) remain in that direction as shown above. 
The difference formulae associated with a cylindrical 
polar system have been used at each node, which is not an 
exact procedure and errors are thereby incurred. To 
estimate the magnitude of these errors, calculations have 
also been performed using the Navier-Stokes equations in 
spherical-polar co-ordinates, for the problem of flow 
in the 16.5 ° diffuser as reported in Ref 15. The 
calculated results on spherical surfaces were then linearly 
interpolated onto the cylindrical surfaces as described 
above for comparison, and as expected, the discrepancy 
between the two approaches was found to be negligible in 
the cases considered, but dependent on conical angle and/ 
or geometry curvature. 

T h e  e f f e c t i v e  v i s c o s i t y  model  

So far it has been assumed that the effective viscosity is a 
calculable quantity which consists of a laminar #, and a 
turbulent l~t component. It is necessary now to assume a 
suitable model for /~. This is done by making use of 
Prandtl's mixing length hypothesis from which /4 is 
defined as 

2OUz 
14 = Pl= l~r I (21) 

where 1= is the axial mixing length. It is assumed also that 
in the region of a solid boundary the turbulent mixing 
length contribution is that proposed by Van Driest 14 and 
modified by Patankar and Spalding 13, namely 

where y is the distance from a solid boundary, T is the local 
shear stress, # the laminar viscosity and A is 26 according 
to Van Driest ~4. 

In the main regions of the flow this investigation 
has revealed that the mixing length distributions giving 
the calculations in best agreement with available 
experimental data are of the form 

l = = K R  (23)  

where K is a constant and R is the radius of the flow cross- 
section. In this investigation, swirling flows are also 
considered. 

The amount of swirl in a flow is hereby 
characterized by the swirl number SN defined as 

Total flux of moment of momentum 
SN--Total flux of axial momentum x section radius 

(24) 
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Fig 3 Axial velocity distribution: turbulent f low in 6 ° diffuser 

This investigation was carried out for cases of swirl blade 
angles of 0 °, 3 °, 5 ° and 7 °, but we report here only the 
results of swirl blade angles of 0 ° and 5 °, for which the 
values of SN were 0.0 and 0.055 respectively. 

R e s u l t s  

As a first step, in order to test the applicability of the 
solution procedure discussed here, the flow in a 6 ° conical 
diffuser, studied by So 6, was calculated. All the relevant 
variables q5 were assumed to have a very small initial value 
at each node and the boundary conditions indicated in 
Fig 1 were applied, some of them deduced from the 
experiments of So 6. The mixing length distribution which 
gave the best agreement with So's data in swirl-free flow is 
given by: 

Iz=0.099R (25) 

and for swirling flow by 

Iz = 0.099R) 
0.065R~(see Table 2) (26) 

lo 

In swirling flows, it was assumed that in the sublayer 
lz = lo. The axial and tangential velocity distributions are 
as shown in Figs 3, 4 and 5. The results of A1-Obaidi ~° 
who used the Patankar and Spalding 13 parabolic type of 
finite difference solution procedure and a Prandtl mixing 
length type of turbulence model are also represented in 
Figs 3, 4 and 5. The discrepancy observed in axial velocity 
profiles near the wall may be due to the approximate 
nature of the near-wall inlet velocity profile as there were 
no experimental data there, and this represents about 20~ 
of the total flow cross-section. The tangential velocity 
distribution can be seen to be in excellent agreement with 
So's data. Note that the flow in So's diffuser was 
unseparated both in the absence or presence of swirl. 

The calculation procedure was then applied to the 
problem of turbulent separated flow through a 16.5 ° 
conical diffuser. The calculations were carried out in two 
major stages. Each stage differed from the other as regards 
the forms of turbulence model used. Tables 3 and 4 
summarize the various stages. The choice of model was 
based on whether the regions of separated* and 
unseparated flow can both be simultaneously predicted. It 
was observed that the turbulence model which predicted 
the existence of flow separation could not simultaneously 
predict the energy dissipation in good agreement with 
observation. However, though the simpler of the models 
predicted the dissipated mechanical energy in excellent 
agreement with the author's experiment and could not 
simultaneously predict flow separation, it was thought 
that the mechanical energy dissipation is the single 
property of the flow that is of greatest importance to the 
engineer. 

The two main stages are presented viz. (1) the 
model which predicted the dissipated mechanical energy 
well and (2) the model which predicted the approximate 
location of the flow separation region. 

Fig 6 is the axial velocity Uz distribution in swirl- 
free flow for the model with Iz--0.099R. This shows that 
the outlet velocity distribution is in excellent agreement 
with observation despite the fact that the existence of flow 
separation is not predicted (see Fig 10). The dissipated 
energy deduced from the calculations of parts (a) of Stages 
I and 2 (Tables 3 and 4) (for 0 °, 3 ° and 5 ° swirling flows) is 
shown in Table 5 and it can be seen that agreement with 
the experiment is good. 

A further optimization of the axial mixing length 
model later revealed that a combination of l= = 0.099R and 

* The location of separation was taken to be that at which the nearest 
grid node to the solid boundary indicated a zero axial velocity value. 
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Fig 4 Axial velocity distribution (6 ° diffuser) 
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Fig 5 Tangential velocity distribution (6 ° diffuser) 

I 
1.8 

SO (1967) 
(Uz)i = 41.0 m/s 
R i = 44.45 mm 

Station Symbol 
1 O o O 
3 O [] [] 

6 zx A Zx 

I e = 0.065 R 
/ z = 0.099R & d 
Present work 

Al-Obaidi (1975) 

r 

R i 

T a b l e  2 

Mix ing  length mode l  
Diffuser angle 
(degrees) Near-wal l  region Elsewhere 

6 /z=Van Driest l aw /z=0.099R 
(swir l - f ree f l ow)  eqn (30) 

6 /z=Van Driest l aw /z=0.099R 
(swi r l ing  f l ow )  Io=l  z Io=0.065R 

lz = 0.027R could predict the approximate location of the 
experimentally observed separation zone and the 
dissipated energy in fair agreement with the observation, 
simultaneously (Fig 7). This was done by first optimizing 
the model to a stage where it simply predicted flow 
separation namely lz = 0.027R, and because the upstream 
flow is unaffected by whatever model one uses (since 
important velocity gradients only occur in the region 
governed by the near-wall model) it was convenient to 
start the calculation from the diffuser inlet using 
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T a b l e  3 T a b l e  4 
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Fig 6 Axial velocity distribution (16 .5  ° diffuser) 
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Fig 7 Axial velocity distribution (16.5 ° diffuser) 
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Fig 8 Axial velocity distribution (16.5 ° diffuser) 
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Fig 9 Tangential velocity distribution (16.5 ° diffuser) 

l: = 0.099R and change over to 1= = 0.027R and then back 
to lz= 0.099R within the tailpipe. The predicted dissi- 
pative losses were not quite as well predicted as when 
I= = 0.099R alone was used, but were observed to be about 
20% different from those measured. The axial velocity 
distribution, Fig 7 shows the occurrence of flow 
separation within the observed region, but the profiles in 
general are not so well predicted. The tangential model 
1o=0.065R was then super-imposed on this final axial 
mixing length model, and the results of Fig 9 show that 
the tangential velocity distribution is in good agreement 

with the observation. That this is the case despite the 
poorer agreement in the axial velocity distribution, Fig 8 
demonstrates that a change in the distribution of one 
component of velocity brought about by a change in the 
corresponding mixing length model has little or no effect 
on the distribution of the other velocity component. 

The centre-line and near-wall axial velocity 
distributions for the main stages of the calculation are also 
shown in Figs 10 and 11. Fig 12 is a graphical 
representation of the final mixing length models used in 
this investigation. 
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Fig 10 Centre-line and near wall axial velocity (16.5 ° diffuser) 

Table 5 

Blade Lo_ 1 LI~ CpR LI_ 2 
angle 

(degrees) % of % of % % 

~drh ~ ~-dm 

(EXPTL) (EXPTL) (EXPTL)  (CALC) 

0 0.8 23.4 75.0 23.6 
3 1.3 17.34 79.0 16.2 
5 2.4 15.8 80.82 15.2 
7 2.7 19.35 77.66 - 

Where by applying the steady flow energy equation at 
sections 0, 1 and 2: 

L0_ 1 = swirl generator loss 

fo ( ~  + ~---~2 ) d rh-  fl ( ~  + ~--~2 ) drh (26a) 

L1_2 =dissipation in diffuser 

fl (Pg+ U2~dff/- 1" (Pg q- U2"~dff/ (26b) 
\ .  2 / 2 / 

CpR = pressure recovery coefficient 

~ (Pc/p) d r h -  $2 (Pg/P) drh 
~1 (U2/2) dth (26c) 

CpR~ = inviscid pressure recovery coefficient 

(A1 "~2 = 95% (26d) 

D e d u c t i o n s  

The results of the calculation of the flow distribution and 
dissipative losses in conical diffusers have been compared 
in this paper with the experimental data, and the main 
deductions fall into the following categories: 

1) For the case of non-swirling, unseparated diffuser flow, 
the mixing length distribution finally adopted as giving 
the predicted flow distribution in best agreement with 
experimental data is given by 

l==0.099R (27) 

2) For the case of non-swirling, separated diffuser flow, the 
finally adopted mixing length distribution I z = 0.099R for 
non-swirling unseparated flow predicted the dissipative 
losses in the 16.5 ° angle diffuser-tailpipe assembly in 
excellent agreement with observation. However, the 
observation was that the same mixing length (l= = 0.099R) 
could not predict the occurrence of flow separation. For 
the prediction of flow separation, it was necessary to 
change from Eq (27) to the equation 

l= = 0.027R (28) 
as the flow developed, and the quality of the predicted 
dissipative losses resulting was poorer than for those 
resulting from the distribution described by Eq (27) acting 
alone. 
3) For the case of swirling, unseparated flow, the axial 
mixing length distribution Eq (27) above was retained and 
the tangential mixing length distribution which was 
adopted as giving the best agreement for both the 
distribution of tangential velocity and the dissipative 
losses in the 16.5 ° angle diffuser-taiipipe assembly was 
given by 

lo = 0.065R (29) 

It was observed that the changes in the distribution of one 
component of velocity brought about by a change in the 
corresponding mixing length distribution, had little or no 
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effect on the distribution of the other component of 
velocity. 
4) For the case of swirling, separated flow, the finally 
adopted axial and tangential mixing length distributions 
represented by Eqs (27) and (29) combined, were observed 
to predict both the tangential velocities and the 
dissipative losses in the 16.5 ° angle diffuser-tailpipe 
assembly in good agreement with observation. However, 
though to predict the occurrence of flow separation and 

the dissipative losses in fair agreement with observation, 
the tangential model (for which the tangential flow 
distribution quality of (2) above was retained) was 
unchanged, a change-over from axial distribution Eq (27) 
to (28) was also necessary. The prediction of the axial flow 
distribution for the cases of the change-over type of 
calculations was better than for those which employed 
Eq (27) alone. 

The Patankar and Spalding modification of the 
Van Driest hypothesis given by 

l,=lo=0.41y{1 ex - / / -  y ~ )  (30) 

was adopted throughout in the immediate vicinity of the 
solid boundary. Its detailed effects on the near-wall 
separation region are still undergoing tests. 

C o n c l u s i o n s  

The following paragraphs form the main conclusions of 
the investigations reported here: 

(1) The time-mean flow distribution in pipes ard diffusers 
can be calculated by applying suitable adaptaaons of the 
Gosman et a111 finite difference method of solution of the 
full Navier-Stokes equations. 
(2) Simple forms of the Prandt mixing length model of 
turbulence have evolved which can be adapted to the 
problems of the time-mean unseparated and separated, 
non-swirling and swirling flows. 
(3) It has been noted that the mixing length distribution 
which predicted the dissipated mechanical energy in good 
agreement with the experimental data could not 
simultaneously calculate the occurrence of flow 
separation. More involved mixing length distributions 
calculated the extent and approximate location of the 
regions of flow separation and reattachment. 
(4) Arising from the previous three conclusions, it now 
seems possible that a reliable prediction of the time-mean 
flow distribution and the associated dissipative losses in 
wide angle conical diffusers similar to those investigated 
here can be obtained. 
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(5) This investigation has shown that the mixing length 
turbulence models are useful and are worth improving 
upon. The complexity and costs given rise to by other 
more sophisticated models, which do not necessarily yield 
the best results in the same situation, provide a powerful 
incentive to continue to exploit the simplicity of the 
mixing length hypothesis. 
(6) Finally, it can be observed that the asymmetry of the 
flow distribution in wide angle diffusers resulting from the 
large regions of stall, cannot be accurately predicted by 
the theory reported in this work. 

Appendix 

In order to evaluate the term D i of Eq (20) for all j the 
following expressions have been used: 

Dj={A)+Cc ,  j(boj+bo.p)B)} j = N , S , W , E  (A1) 

w h e r e  

A,.=AJ 
J Vp (A2) 

and 

B'.- B1 (A3) 
' Vp(bdp,j + b,,p) 

As - a4,,p($% - ~=,) (A4) 

Aw = a4,,p($nw - I//sw) (A5) 

Aw = a0,p(~9,, - Csw) (A6) 

AE = a~.p(~b~o-- ~k.¢) (A7) 

/~  = bo,N + b~bp Z E - -  ZW(FN -+- rp) (A8) 
8 rN--rp 

Bs = b ,,s + bC~pZE -- ZW(r s + rp) (A9) 
8 rp--r s 

Bw = b,,w + bq~p r N - r s (rw + rp) (AIO) 
8 z p - z w  

n w  n n e  

....... . . . . . . . . . . . . . . . . . . . . .  
i........ :...........,r . ' . ' . ' . ' . ' . ' . ' . ' . ' . 'a " - "  . . . . . . .  : ' : ' 7 ' " " "  . . . . . . . . .  

. . . . . . .  . . . . . .  . . . . .  . . . . . . . . . . . . .  
i " . ' . ' . - . ' . ' . ' . ' . ' . ' . '  r . ' . ' .  . . . . . .  . ' . ' . "  

. . . . . . .  . . . . . .  . . . .  

W : w ? i : i : i : i i ! i~P! i ! i i i : i : i : i : i : :  L e E 

• .:.;.:.' . . . . .  . ' . ' r  . '. '. '. '. '. '. '. '. '." ~ 
|............'.....'.'.1.'.'.'.'.'.'.'.'.'.'. 1 
r. ' . ' . ' . ' . ' . ' . ' . ' . ' . 'a " . ' . ' . ' . ' . ' . ' . ' . . " "  

S W  ======================= i i~i:i:i:?:;:i:;:i " s e  

Fi 9 A1 The nodal subscripts which surround the node P 

BE = b o,E + bC~p r N - rS (rE _ rp) (A 11) 
8 ZE--Zp 

rp 
v~ = 4 ~ z E -  Zw)(rN - rs) (A12) 

The nodal subscripts N, S, W, E, he, nw, se and sw which 
surround the node p are shown in Fig AI. 

The calculations of flow in conical diffusers with 
tailpipes presented in the main body of this article based 
on the time-averaged Navier-Stokes equations, used 
cylindrical-polar coordinates with finite-difference 
expressions appropriate to a rectangular mesh system. In 
order to place mesh points on the conical boundary, the 
mesh actually used was non-orthogonal, as shown in Fig 
A2, and that procedure involved some degree of 
approximation. 

Various alternatives exist for the choice of co- 
ordinate system and mesh arrangement for the 
configuration studied. 

The first possibility would be to use a cylindrical- 
polar co-ordinate system with a rectangular grid, and to 
use one of the standard procedures for dealing with 
boundary points which do not coincide with mesh points. 
However, this procedure tends to be unsatisfactory 
because one (or more) boundary points almost inevitably 
lies close to, but not on, a mesh point leading to large 
discretization errors. 

A second alternative would be to use a co-ordinate 
system locally appropriate to the geometry. That is, 
spherical co-ordinates would be used in the conical 
diffuser, changing to a cylindrical system in the tailpipe. 
However, this would be rather cumbersome and it might 
be difficult to ensure a smooth change-over. There would 
also be the practical difficulty of comparing experimental 
results obtained along plane sections normal to the axis, 
with results calculated along spherical surfaces. 

A third alternative would be to use a form of co- 
ordinate transformation which maps the physical domain 
onto a cylinder, and then to solve the equations using 
cylindrical polar co-ordinates with a rectangular mesh in 
the transformed plane. This would considerably 
complicate the form of the equations and might lead to 
computational difficulties. 

Instead of these possible approaches, we have 
directly applied the discretized Navier-Stokes equations 
in cylindrical-polar co-ordinates formulated on the basis 
of a rectangular mesh system to the problem in a local 
rhombic mesh system as shown in Fig A2. 

W 

,~.--------  h ----------4~ 

P(I,J) • ~ _ _ _ . t / ~ _ ~ ,  

h 

Fig A2 

s D-X 

Deformed rectangular mesh 
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By applying the discretized Navier-Stokes 
equations in cylindrical polar co-ordinates directly onto 
this distorted grid system, it was observed 15 that the 
errors incurred were negligible. 

It should however be clearly stated that this 
approach is only approximate. 

It is interesting to note that Marsh 16 in his 
investigation on an arbitrary turbomachine has used a 
slightly different finite difference scheme in which in order 
to maintain an overall accuracy of the second order or 
higher in the local spacing of the distorted grid points in 
the cross-stream direction which he denoted by K0, he 
obtained the finite difference approximations by using the 
function values at ten specially selected grid points. His 
more accurate approach would therefore have taken into 
account the smaller terms which ~he oresent authors have 
taken as small and negligible. 
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